
BigDFT-suite Documentation
Release 1.8.3

BigDFT developers

Nov 19, 2018





Contents

1 Overview of BigDFT 3
1.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Available Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Users’ instructions 5
2.1 Get the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Install the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Run the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Frequently encountered problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Developers’ instructions 13
3.1 BigDFT-suite manifesto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Tips for developers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Indices and tables 15

i



ii



BigDFT-suite Documentation, Release 1.8.3

The BigDFT-suite project regroup the packages which are needed to install, run and employ the BigDFT code for
production calculations.

Contents 1



BigDFT-suite Documentation, Release 1.8.3

2 Contents



CHAPTER 1

Overview of BigDFT

1.1 Publications

Here, you can find the links to papers describing and using BigDFT.

1.2 Talks

You can find some conference and workshop slides about BigDFT here.

1.3 Available Functionalities

Todo: insert list of functionalities, current status (i.e. works/under development) and compatibility issues, and link to
notebook if appropriate

3

http://bigdft.org/Wiki/index.php?title=Articles_describing_BigDFT
http://bigdft.org/Wiki/index.php?title=Articles_using_BigDFT
http://bigdft.org/Wiki/index.php?title=Presenting_BigDFT


BigDFT-suite Documentation, Release 1.8.3

4 Chapter 1. Overview of BigDFT



CHAPTER 2

Users’ instructions

2.1 Get the code

BigDFT is available on Launchpad, from where it can be downloaded as a tar file or via bzr using the command bzr
branch lp:bigdft.

2.2 Install the code

2.2.1 Install via Docker

BigDFT may be installed via Docker, see instructions here.

Todo: insert some basic information about Docker

2.2.2 Install from sources

The BigDFT suite

From version 1.8.0, that can be downloaded either from the provided tarball or by having a launchpad account, via

bzr branch lp:bigdft

the build system of BigDFT has been modified. Instead of building the code with
one single configure line, the code is now built as a suite of different packages.

In this scheme we might see how
the BigDFT code is separated. This

5

https://launchpad.net/bigdft
https://hub.docker.com/r/bigdft/sdk//


BigDFT-suite Documentation, Release 1.8.3

was also the same compiling pro-
cedure that has been used for the
1.7.x versions of the code. The fig-
ure describes the interdependencies
among these packages. Let us de-
scribe each of the packages which
are depicted here. The packages
might be separated in upstream
contributions and native contribu-
tions

Upstream packages

• libyaml: this library
is used to parse the yaml
<http://yaml.org/> Markup
language, that is used in the
BigDFT input files;

• PyYaml
<https://pyyaml.org/>:
this is a Python module
which makes possible to
convert Yaml into python
objects. This part is mainly
used for postprocessing
purposes as BigDFT logfile
also comes in yaml format;

•
libXC:
this
<http://www.tddft.org/programs/octopus/wiki/index.php/Libxc>
library handles most of the
XC functionals that can be
invoked from BigDFT runs;

• GaIn: this library handles
analytic integrals of common
operators between Gaussian
Functions. It does not
perform low-level operations
and can be linked separately;

Native packages

• futile: a library handling most common FORTRAN low-level operations, like memory managment, profiling
routines, I/O operations. It also supports yaml output and parsing for fortran programs. It also provides wrappers
routines to MPI and linear algebra operations. This library is intensively used in BigDFT packages;

• CheSS: A module for performing Fermi Operator Expansions via Chebyshev Polynomials, released as a sepa-
rate project on Launchpad

6 Chapter 2. Users’ instructions

https://bigdft-suite.readthedocs.io/projects/futile/en/latest/index.html#futile-index
https://launchpad.net/chess


BigDFT-suite Documentation, Release 1.8.3

• psolver: a flexible real-space Poisson Solver based on Interpolating Scaling Functions. It constitutes a fun-
damental building block of BigDFT code, and it can also be used separately and linked to other codes. It also
internally uses the futile library for the I/O.

• libABINIT: this is a subsection of files coming from ABINIT software package, to which BigDFT has been
coupled since the early days. It handles different parts like symmetries, ewald corrections, PAW routines,
density and potential mixing routines and some MD minimizers. Also some XC functionals, initially natively
implemented in the ABINIT code, are also coded in this library. Also this library uses the futile code,
through the (experimental) PAW section.

• BigDFT: the core routines of this package

• spred: a library for structure prediction tools, that is compiled on top of BigDFT routines.

In the previous versions, all these different packages were compiled with the same configuration instructions. With
the present version, each of the code sections described above can be considered as a separate package (some more
are upcoming), which improves modularity between code sections and reduces side-effects. In addition, each package
can now be compiled with different installation instructions.

We have used a building suite tool based on the Jhbuild <https://wiki.gnome.org/action/show/Projects/Jhbuild?action=show&redirect=Jhbuild>,
which is regularly used by developers of gnome project. We have re-adapted/added some of the functionality of
the jhbuild package to meet the needs of our package. Let us now present how the installation should work. We
have prepared a script, called Installer.py, which should take care on the main actions related to BigDFT suite
compilation and installation. Let us investigate how it works.

Usage of the Installer.py script

As mentioned above the BigDFT suite is compiled by means of instructions from the Python script Installer.
py. Such script triggers the usage of the jhbuild.py Python file which is at the basis of the jhbuild project
mentioned above. There are various actions available in addition to the build command. To know them, just type

$ ./Installer.py help
Parsing arguments with method argparse...
Quick overview of the BigDFT suite Installer program
--------------------------------------------------
USAGE: Installer.py <action> <package>
--------------------------------------------------Available actions
autogen :

Perform the autogen in the modules which need that. For developers only.
build :

Compile and install the code with the given configuration.
buildone :

Build a single module of the suite
check :

Perform check in the bigdft branches, skip external libraries.
clean :

Clean the branches for a fresh reinstall.
cleanone :

Clean a single module of the suite
dist :

Creates a tarfile for the suite tailored to reproduce the compilation options
→˓specified.
dry_run :

Visualize the list of modules that will be compiled with the provided
→˓configuration in the 'buildprocedure.png' file.
link :

Show the linking line that have to be used to connect an external executable to
→˓the package (when applicable)

2.2. Install the code 7

http://www.abinit.org
http://www.bigdft.org


BigDFT-suite Documentation, Release 1.8.3

make :
Recompile the bigdft internal branches, skip configuring step.

startover :
Wipe out all the build directories and recompile the important parts

update :
Useful to update a pre-compiled branch after a merge

--------------------------------------------------
Available packages: ['futile', 'chess', 'psolver', 'bigdft', 'PyBigDFT', 'spred']
--------------------------------------------------
QIFI-QIFI-QIFI-QIFI-QIFI-QIFI-QIFI-QIFI-QIFI-QIFI- (Quick Instructions For the
→˓Impatient)
Ideally, there are two different policies:
Developer: From a development branch, start by "autogen", then "build"

User: From a tarball, start by "build"
Perform the "dry_run" command to have a graphical overview of the building procedure

So for example, to build the tarball of bigdft-suite out of a valid branch, you may type

Installer.py dist bigdft

You should have eventually a tarfile named bigdft-suite.tar.gz in the build tree. Such tarfile may be used to
build the suite in another machine.

Few important informations:

• This script is intendent to provide the end-user with a functional set of executables coming from the suite
packages. It has to be used to (re-)work on the entire suite, not a single package only.

• It does not replace the traditional make commands. A developer of a single package, say futile for example,
should first compile *and install (make install) the package in its build directory, then rebuild the depen-
dencies. In such a case, it is advised to run Installer.py clean first, then the build command would
work.

Installing from a configure line

As written above, packages were already configured and compiled with a previous BigDFT version. Therefore we
have prepared a compilation method to compile the 1.8.x build system from a configure line. See in the examples page
some of the configure lines which were already tested on different machines.

The principle of this installer is to execute, in a build directory different of the source one, instead of the configure
script, the following command:

<path_to_sources>/Installer.py build -c

Let us consider the example of the pilipili machine (internal L_Sim lab machine). Clearly, environment modules
still have to be loaded:

module load intel/13.0.1 impi/4.1.0.024

Then the installer script can be used with the following command:

<path_to_sources>/Installer.py build -c 'FCFLAGS=-O2 -openmp' \

'--with-ext-linalg=-L/opt/intel/composer_xe_2013.1.117/mkl/lib/
intel64 -lmkl_rt -lmkl_scalapack_lp64 -lmkl_blacs_openmpi_lp64 -liomp5 -lm' \

'--enable-opencl' 'CC=mpicc' \

CFLAGS='-openmp' 'CXX=mpicxx' 'FC=mpifc' 'F77=mpif77' 'FCLIBS= '

8 Chapter 2. Users’ instructions



BigDFT-suite Documentation, Release 1.8.3

The following message dialog will appear:

Configuration chosen for the Installer:\

Hostname: pilipili

Source directory: /home/athelas/genovese/work/BigDFT/1.8\

Compiling from a branch: True\

Build directory: /local/genovese/binaries/1.8-ocl\

Action chosen: build\

Verbose: False\

Jhbuild baseline: <path_to_sources>/jhbuild.py \

Configuration options:\

Source: Environment variable 'BIGDFT_CONFIGURE_FLAGS'\

Value: '"FCFLAGS=-O2 -openmp" "--with-ext-linalg=-L/opt/intel/
composer_xe_2013.1.117/mkl/lib/
intel64 -lmkl_rt -lmkl_scalapack_lp64 -lmkl_blacs_openmpi_lp64 -liomp5 -lm" "--enable-opencl" "CC=mpicc" "CXX=mpicxx" "FC=mpifc" "F77=mpif77" "FCLIBS= " '\

Do you want to continue (Y/n)?

The Installer script has detected the different compilation options. It has filled the environment variable
BIGDFT_CONFIGURE_FLAGS with the options passed after the -c option in the command line. By typing Y the
bigdft bundle will build.

As we did not specified the -v option (type ./Installer.py help for the available commands and options), the
code will be built in silent mode (this would correspond to the tinderbox option of JhBuild. You should have the
following information in the output:

List of modules to be treated: ['libyaml', 'futile', 'psolver', 'libxc',
'libABINIT', 'GaIn', 'bigdft', 'spred']

libyaml : ['checkout', 'configure', 'build', 'install']

futile : ['checkout', 'configure', 'build', 'install']

psolver : ['checkout', 'configure', 'build', 'install']

libxc : ['checkout', 'configure', 'build', 'install']

libABINIT : ['checkout', 'configure', 'build', 'install']

GaIn : ['checkout', 'configure', 'build', 'install']

bigdft : ['checkout', 'configure', 'build', 'install']

spred : ['checkout', 'configure', 'build', 'install']

Then in the directory named buildlogs of the build tree you might find the index.html file that contains the
status of the compilation.

At the end of a successful compilation, you find in the build directory a file named buildrc that may be used for
future compilation and to specify more flexible configurations options. See next section for the details.

Using a configuration file (rcfile)

The environment variable BIGDFT_CONFIGURE_FLAGS is a way to indicate some general options for all modules.
A more powerful method is to use a rcfile configuration file which indicates all possible option for each module.

2.2. Install the code 9



BigDFT-suite Documentation, Release 1.8.3

Some examples are provided in the directory rcfiles. For advanced features, the different possible options are
detailed in 1.

The default behaviour (no information)

Working with a configuration file is the default behaviour of jhbuild. Therefore it is normally expected to provide
a file to the Installer.py script (see next section on how to do that). If no files is provided in the command line,
the script search for (priority order):

• A file named buildrc in the current build directory;

• A file in the directory rcfiles/ of the source tree that contains the hostname string (or a part if it) in its
basename. If multiple files satisfy this condition, it offers a choice.

Therefore when asked to proceed for the installation, it is advised to pay attention in the initial message which is the
file chosen for the configuration.

How to invoke a configuration file

The name of the configuration file might be specified with the -f option of the installer. the file might be either
specified via its absolute path, or by its name. In this case, it is searched for in (priority order):

• The current working directory;

• The directory rcfiles/ of the source tree.

Manipulating the configuration file

The principle of the configuration file is to provide configure options which are different for each o the packaged of
the suite (called modules in the jhbuild spirit). Therefore, to each of the package one must associate a configure
line. Such information is provided in the dictionary module_autogenargs of jhbuild, and might be specified as
follows (see e.g. the file dynamic.rc)

module_autogenargs['libxc'] = "CC=gcc --enable-shared"

or, alternatively

module_autogenargs.update({'libxc': "CC=gcc --enable-shared"})

depending on your taste. If the BigDFT suite is compiled from a configure line, at the end of the first compilation a
buildrc file is produced, that can be then used in the following compilations.

The Python syntax of the configuration file

An rcfile is invoked inside the collection of python modules provided by jhbuild. Therefore within this file the
python syntax is necessary. This adds extra features that would otherwise be difficult to implement. For example, one
might define functions that indicate common configuration options, or that retrieve the current working directory to
define more elaborated configuation lines. For example, in a rcfile we may found (see for example the file mira.rc
of the distribution):

def fcflags_short():

return """'FCFLAGS= -g -O3'"""

[...]

10 Chapter 2. Users’ instructions

https://developer.gnome.org/jhbuild/stable/config-reference.html


BigDFT-suite Documentation, Release 1.8.3

module_autogenargs.update({

'libxc': fcflags_short(),

[...]

}

We here prefer to use return values of functions rather that to define extra variables in the script as jhbuild warns if
unknown variable names are found in the configuration file.

Building the executables

There are some practical examples of compilations on different architectures where you might find useful information
on how the code has been compiled on different platforms and for different options.

Linking external software with BigDFT packages

From version 1.8.0 on the build system of BigDFT is “generic” in the sense that it does not only allow the compilation
of the main BigDFT software, but also of various sub-packages. This is useful if one is only interested in some of the
packages distributed with BigDFT.

As an example we will show the compilation of the CheSS package, which itself depends on futile. It can be down-
loaded here: 2 After downloading the tar.gz execute the following steps:

tar -xzvf CheSS-0.1.1.tar.gz

cd CheSS-0.1.1

mkdir Build

cd Build

../Installer.py build chess -d -c FC= CC= FCFLAGS= --with-ext-linalg=

A dialogue similar to this one should appear:

Configuration chosen for the Installer:

Hostname: stephan-Latitude-E7450

Source directory: /home/stephan/Documents/BigDFT/stablebranch

Compiling from a branch: True

Build directory: /home/stephan/Documents/BigDFT/stablebranch/Build-gnu_debug

Action chosen: dist

Verbose: True

Jhbuild baseline: ../jhbuild.py -f buildrc

Configuration options:

Source: Configuration file '/home/stephan/Documents/BigDFT/stablebranch/
Build-gnu_debug/buildrc'

Do you want to continue (Y/n)?

Confirm and wait until the compilation in complete. In order to link now another software with CheSS, run the
command

2.2. Install the code 11

https://launchpad.net/chess


BigDFT-suite Documentation, Release 1.8.3

../Installer.py link chess

which should give you an output similar to this one:

--------- Linking line to build with package "chess":

-I/home/stephan/Downloads/CheSS-0.1.1/Build/install/include-L/home/stephan/
Downloads/CheSS-0.1.1/Build/install/
lib -lCheSS-1 -lfutile-1 -lblacs-openmpi -lblacsF77init-openmpi -llapack -lblas -lyaml -lrt -lfutile-1 -lblacs-openmpi -lblacsF77init-openmpi -llapack -lblas -lyaml -lrt

--------------------------------------------------

This is the link line that you can now use in your other software to link with CheSS.

The BigDFT Installer class

2.3 Run the code

We recommend running BigDFT using a jupyter notebook. Various features have been implemented in PyBigDFT
for the straightforward pre- and post-processing of calculations, as demonstrated in these tutorials: pybigdft_tutorials,
with further examples available on github.

Todo: add some brief text and a link to explain what a jupyter-notebook is; tips for using notebooks remotely (link
to script); how to run without using a notebook, i.e. the key ingredients of a calculation and where to find variables -
should be at a very basic level.

2.4 Frequently encountered problems

Todo: add here any problems (and how to avoid them) which occur on a frequent basis

12 Chapter 2. Users’ instructions

https://bigdft-suite.readthedocs.io/projects/PyBigDFT/en/latest/tutorials.html#pybigdft-tutorials
https://github.com/luigigenovese/BigDFT-nb


CHAPTER 3

Developers’ instructions

3.1 BigDFT-suite manifesto

The code is not a monolithic piece of software but a collection of independent packages that may be installed inde-
pendently. The Installer script has been designed for the purpose.

3.2 Tips for developers

3.2.1 Choose the correct package in which to insert the developments

The first question to ask yourself is the generality of the functionality you are going to implement. The spirit is to
work at the lowest possible level for a given task. The idea is to make available the functionality also to other potential
users of the BigDFT-suite subpackages. This will also help in a better structure of the API of each package.

For instance, suppose you would like to implement a continuum solvent cavity determination for a particular DFT
run of a molecular system. The correct level of development in this case would be the psolver package, as this is
presently dealing with continuum solvents and cavities.

For a general overview one might say that:

• futile deals with low-level functionalities like stdlib (but for FORTRAN). New MPI wrappers, strategies
for memory copy and allocations should be implemented there.

• at_lab library (will) deal with all the operations which are associated to position

• <to_B_continued>

3.2.2 Read the coding rules

For some inspiration on coding style and strategies, read this.

13

http://bigdft.org/Wiki/index.php?title=Coding_Rules


BigDFT-suite Documentation, Release 1.8.3

3.2.3 Document the API of the high-level routines

Todo: write something here

3.2.4 Create a test for the functionality

Each of the packages has its own continuous integration procedure, refer to it for a suitable implementation.

• futile, psolver: F_REGTEST_INSTRUCTION (to be documented)

• bigdft see here.

3.2.5 Make a notebook which demonstrates the functionality in PyBigDFT

For each new high level functionality, you should create a jupyter notebook which demonstrates the new capability.
The idea is to ensure continuity and to help acquaint users with the new feature. Some examples of notebooks can be
found on github.

3.2.6 Insert the notebook as a tutorial in the PyBigDFT documentation

Once an appropriate notebook has been written, this should be added to the tutorial directory (BIGDFT_ROOT/
PyBigDFT/source/tutorials), so that the documentation will be automatically generated and available as a
tutorial at pybigdft_tutorials.

Example of link to futile_index, followed by exemple to pybigdft_tutorials, actualized.

Example of link zipfile.ZipFile to python class or to f/f_precisions or maybe futile.Utils.
find_files() this, or again BigDFT.Logfiles. If all these links are not broken, we may reach the following
conclusion: intersphinx seems to work.

14 Chapter 3. Developers’ instructions

http://bigdft.org/Wiki/index.php?title=Inserting_a_new_test_in_the_distribution
https://github.com/luigigenovese/BigDFT-nb
https://bigdft-suite.readthedocs.io/projects/PyBigDFT/en/latest/tutorials.html#pybigdft-tutorials
https://bigdft-suite.readthedocs.io/projects/futile/en/latest/index.html#futile-index
https://bigdft-suite.readthedocs.io/projects/PyBigDFT/en/latest/tutorials.html#pybigdft-tutorials
https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
https://bigdft-suite.readthedocs.io/projects/futile/en/latest/f_prec.html#f/f_precisions
https://bigdft-suite.readthedocs.io/projects/futile/en/latest/pyfutile.html#futile.Utils.find_files
https://bigdft-suite.readthedocs.io/projects/futile/en/latest/pyfutile.html#futile.Utils.find_files
https://bigdft-suite.readthedocs.io/projects/PyBigDFT/en/latest/BigDFT.Logfiles.html#module-BigDFT.Logfiles


CHAPTER 4

Indices and tables

• genindex

• modindex

• search

15


	Overview of BigDFT
	Publications
	Talks
	Available Functionalities

	Users’ instructions
	Get the code
	Install the code
	Run the code
	Frequently encountered problems

	Developers’ instructions
	BigDFT-suite manifesto
	Tips for developers

	Indices and tables

